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Abstract

\\'e discuss lh(' recently iltlroduced multilevel algorithm for lhe steady-

slate solution of Markov (:ha i,s. The method is based on an aggregation I)rin-

cil)le whi('h is well esl,al)lish('(1 in th(' lit('ralur(' and t'eatur(.s a mull il)licalix'(.

('oars('-h'v('l correction, t{ecursive al)l)lication of the aggr('galioll l)rinciple.

which uses an ol)eralor-(lel)endent coarsening, yields a muhi-l('v('l lnel]lO(]

wl,ich ],as been shown exp('rimentally to give results significa.tly faster |hall

the l.yi)i(:a.l methods currently in use. When ('a.sl as a muh.igri(l-likc melho(l,

the algorithm is seen to be a (',alerkin-Full Approximation S('h(,ln(, wil.ll a

solution-del)endenl prolongation operator. SI)e('ial properlies of lhis l)rolon -

galion lead 1.o lhe ('a.ncellal.ion of lhe ('Oml)ul.ationally inl.(,nsiv(, l.(,rms of th('

('oars(,-lev(,l equations.
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gley Research (:enler, Hami)toll. VA "2:1681-00()1. The work was also carried out. whil,'

the author was a Visiting Assistant ProDssor at. the Mathematics and (:omputer Science

l)elmrl.menl of lhe University of I)enver, Denver, (:().





1 Introduction

Markov chains describe discrete-state stochastic processes in which the prob-

abilities of transitions between states a.re a function solely of lhe current

state of tile chain the so-called memoryless property. Since this property is

al_proxima.tely satisified by many physical systems, Markov chains are used

widely in stochastic modeling. \Ve will draw our examples in this pal)er from

the performance and reliability modeling of computer systems. It is COmlnon

t.o distinguish between continuous time Markov chains (('TM(Is), in which

transition coefficients between states are interl)reted as exponentially dis-

t,rilmt.ed rates or delays, and discrete time Markov chains (1)TM(Is), where

they a.l'¢' treated as i)robal)ilities. In the latter case, the Markov chain is

described by a stochastic matrix. In the steady-state case, ("I_M(I l)roblems

can be converted via. a simple transformation into problems described by a

DTM(:. l Tltin]ately, lhe Markov chain represents a linear system of equations

which is usually sparse and often extremely larg_,.

The goal of modeling computer syst.ems is to derive information on per-

formance, measuretl typh'ally as job throughpul oi" component utilizalion,

and availability, delined as the proportion o[" time a system is al)h' to I)et'-

form a. certain function in the presence of componenl, failures and possibly

also repairs. Various abstract modeling lools for compul.er systems are in

widespread use today, tile tllosl, inll)ortant of which are generalized stochas-

tic Petri nets ((;SPNs) [1] and queueing networks [6]. When the nlemoryless

condition is satisfied, such models are equivalent to Markov chains, and il

is required t.o solve the Markov chain in order to derive useflll information
about the abstract model.

l Tnfortunately, the number of states of the Markov chain (and thus the

dimension of tile linear system) grows extremely quickly as lhe complexity

of the model is increased. There is one unknown for each state that the

model may be in - a nulnber that is subject to a combinatorial explosion.

Thus, the Markov chains that haw? to be solved even for relatively coa.rse

COml)uter models may have tens or hundreds of thousands of states. :\parl.

fl'om their size, one further drawback of typical Markov chains is the presence

of coefficients on a, wide range of scales. (:onsider, for exa.ml)le, a reliability

model of a computer, in which the rate of component failure may be only once

in every few months, whereas the rates a.ssociated with the normal 1)ehaviour

of the system are measured in kHz _nd MHz.



The resulting large systems of equat, ions IIIllSl, I)¢' solved numerically us-

ing an iterat.ive scheme. 'l'ypical iterative methods in use ill the computer

modelling community are the Power. (lauss-Seidel ((',S), and successive over-

relaxation (SOR) algorithms. Surveys of currenllv used methods may |)e

found in [12, S]. All of these methods have the dry, whack iha! they may

require many il.era.tions to reach an accurate solution, particularly if the sys-

l.em is large or if coetticienl.s of slrongly varying nlagnitude are presenl.. This

can lead io unacceplably long computation times.

In this paper, we will consider a multilevel (ML) solulion algorithm for

Markov chains, which was introduced in [5]. The method is based on the

principle of iteralive aggregation and disaggregalion, a well-established nu-

merical solution technique for Markov chains [7, l_i. 14]. This principle uli-

lizes a coarse-h,vel level correction thai is multil)licalive, rather tlmn addi-

live, i.e. newly ol)lained coarse-level x,a.lues are used as _ factor t)v which

fine-lewq a.pI)rOxinmliolls are resca.led. |;'urthermorc. lhe aggregatiolh it,self.

or the coarsening st.val.eg.v is operalor-dependelfl, ill lhat localh" strongly

coupled states are mapped together.

Algebraic mulligrid (AM(',) [13] is considered t.o I,_, an attractive solution

strat, egy for lhe svsloms of equal.ions thai are llliSlrllcl, tlrod a, lld which may

have strongly varying co<,tlici<,nts. These are <'hara.<'tcvisli<' ])rol)erties of lh('

Markov chains thal typically occur in practi<'e, tlowever, as far a.s we know,

until now there has been no A*iG a.1)l)roa.<'h to solving Markov chains.

I! will I)o shown lhat lhe multilevel method is equivalcnl t,o an algebraic

multigrid scheme which uses the Galerkin method for the coarse level Ol)er-

ator and is of Full Al)pr<)ximation Scheme (FAS) l.yl)e. When viewed as a

multigrid s<'henle, the novellv of tim mullihwel nlethod is seen 1o si.enl fronl

the definilion of the prolongation ol)era.t.or, which is solul.ion-del_elldenl and

vields the idenlily operalor when combined from llDe left or from the righl

wilh the resi ri('i io)l Ol)('rator. This has lwo inier('sting et['('('i s: the righl-hand

side of the coarse level equations d('g('n('rat('s int.o a simple restri('lion of t.h('

[in<'-lev('l vighl-hand side, and the coarse level ot)('ral of is solution-del)endenl

all(I lh('r('fov(' (ha.ng('s from itera.l.ion Io i(.eralion, ('v('n lhough the Markov

chain 1)rol>lem itself is linear.

In (.h(' following sect.ion, we describe the prol)h'nl and lhe a.ggregal.ion

equations. The mul(.il(,vel method is described in s('clion :_. In seclion 1,

lh(' multilevel melhod is r('wril.t(-n and inl.erl)rel('d as a mul(.igrid sche)n('. In

soclion 5 exl)erinlenlal rcsulls for Ma.rkov chaills arising from a well-known



multil)rocessor reliability model and froln a simple queueingnetwork are
presented,showingtile superiority of the method over the stalldard Gauss-
Seidelscheme.The final section summarizest.hepaper.

2 Problem Description and

Equations

Aggregation

(_onsi(ler an irreducil)le Markov chain consisling of, states ._1,._2 ..... .%.

l)(,note 1.11(,unknown vector by tt, where ui is the slea.dv-st.at(" l)rol)al)ility

of tile Marker chain being in state ._i. In ol'deF to facilitate the notation

for 1.11¢"multilevel scheme, we use indices l, / - 1, etc., to indical(" levels of

aggregation of the Marker chain. The original Marker chain is designated
lo 1)(' al l('v('l / = h.a.r.

We then have to solve the system of equations defined t)y the Marker

chain

,41u l = 0 , (1)

with 1,11("a(t(lilional condition

71

Z4= l,
i=1

where 1 = I'ma.r. Note that, in the discrete time case, equatioll (1)is usually

written as

7rP = 7r (2)

where a" = ('tfl) _" and P = (Al)_'+ I, which is the so-called transition matrix.

Equalion (2) defines the solution of lhe Marker chain in l(wms of a.n eigen-

va.lue problem, and since P is a stochastic matrix, we know that it possesses

lhe unique maxilnal eigenvalue A = 1. We will, however, use the notation of

equation (l) throughout,, reserving the symbol P for the 1)rolongation Ol)er-

alor. In the continuous time case, equation (1) is usually written

7rQ = 0.

where Q = (At) r. Matrix A l has zero column sums and all off-diagonal

coefficients are non-negative, making it. a singular M-matrix of rank . - 1.
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Figure 1: Aggregation of Markov ('hains

A coarser rel)res,"nlal, ion of the Markov chain Ch'scril>¢,d I_y niatrix A z illay

I)e obtained I)v a99r(.qalio,. This alilounl.s io croalilil!j a llOW Markov c]iaill

descril>ed by a tnat rix A t-I with the vector of stale i)robal,ilities +fl-i each

of whose N slai+'s 5,'i, ,g'+...... g'x is derived by ]illlil)illg logei, her a iltilili)cr

of stales of the o1"igiiia] .'-;vs|onl. Aggregation is lnolivale(l by probabilistic

argtllllOttts wiiich are illustrated ill figure 1. The Jigure shows fotlr stales

•+i-._2.._iJ,+_.t of a Markov cliain, where the probal>ilily of iiie chain being in

each of the stales is 9;iv<'n I)y ui, u2, u.+. ut. resl)<'ci ivelv. It, addition, a transi-

lion froni ._1 to ._:+with lhe i)rol)al)itity A+l is a,ssunied. The prol>ability of the

chaiii I>eilig in eil her slale ._1 or Mate ._7 is lhen given IJv , i --I-u2, and w<' niav

replace l liis pair o[ st ales liv the corresponding '+niaci'o-slale" ,s'i. and sinii-

larlv for states ._:_ and ,s<l. The t,i'allsitioii A:_i is tlieli liial)l>ed to a i ralisilioll

beiweon inacro-slalx's ,_'l and 5;2 with a lm)l)al)ilily value of .i:_i'ul/(Ul + u2),

which rel)resenls the original lransition prol)at)ilil, v niullil)lied l)v the relative

prol)alfiliiy of the Markov chain being in ._i, givoii l liai ii is lhe inacro-,st.ale

,S'i. This al'g.jtliiielit allows ilS io g_oileratc a COal'S_' h,v<q (aggregaiod) svst('lii

['roln our original Markov c]i;_in.

In llie following, w'e will liSP 1,lie |,el'IllS,lille if I'll ali<l co.rm /f I,fl io refer 1o

Markov chains, where tile ]at ler is ol)lained 1,v aggregat ioll t'ronl tile' t'orillel'.

The relalion ,_; C 5;1 sigiiifies lhal lhe _iile level slaie ._; is inapl)ed by ihe

aggregation operation lo the coarse t_,vel state 5). A sei or line states niat)l)ed

io a COllllilOli c(;larse level slate {._i : ._i { ,s'/} will lie reti'i'red to as ali



a gg r_g e Ie:.

The mal, rix A 1-1 of the aggregated sysi,em is thus defined as follows •

E "5
,sj E No

(:_)

This is the classical aggr¢galion malrLr. Now thal the nlal.rix /t l-1 is a

['unctioiD nor only of the fine level matrix At, but also of llw fine level solulion

vector u I. [1. will be shown in seclion ,1 l.hal, t.his coarse level real.fix is

equivah,nl I,o the Galerkin operator in the multigrid COlll.exl., wil.}l special

intergrid t,rallsfer operators.

It is well-known l hat lhis aggregation slrat.egy propagates l he Markov

chain properly Io the ('oarsor level [15], i.e., the matrix A 1-1 is also an in'e-

ducibh' Markov chain. This yields 1.he aggregalcd equation in the unknown
1t -- 1 .

A l-lu t-I = 0

E.i-I = 1
1=1

II can then 1)e shown that the solution of the coarse svsl.em salisties

u_-l= _ u,( ,
s_ E .'q l

i.e., the probability of being in a coarse lewq stale is l.hc sum of the prob-

abilities of being in any of its (onstituenl. fine-level sl.a.l,es. We will use the

aggregation equation as a basis for the mullilevel inetho(1, whereby we ap-

proximate the exact, solution values u t in (3) by values froln lhe currenl

iterate.

The coarse-level matrix depends on the fine-level solut.ion, and must. there-

fore, in t.he context of an iteral, ive method, ])e apl)rOXimal.ed by using the

values of the current iWrat, e. More precisely, A l-l is a function of the r(laliv(

values of t,he fine-lew,l nodes with respect to the values of their aggregates.

These are tile probabitil.ies of the Markov chain being in a fine-level state

conditioned on being in the aggregate state.



The motivation tk>t'the nnlltilevel method lies in the observationthat, if
il is possibleto obtain improvedvaluesfor the relatire l)robabilil,iesof fine-
level states in a comlnol_aggregal.e,then a.nimproved coarse-levelsystem
can be set,up and solved,the solution of which t'epresenl.slhe prol)al)ilities
of the aggregates.The a.rgunlentcan. of course.1_¢,apl)lied recursively. We

choose to form small aggregates comI)osed o[' slrotlgly-couph,d neighl)ol'ing

stal.es, a.s the (_a.uss-Seidel iteration is able to achieve an improvelnellt in the

relal.ive l)robabilit.ies of such states etficient.ly. XA;e refer i.o the Gauss-Seidel

method in this conl<'xt as a "smoother", although its role here is somewhat.

different.. This moliva.lh)n parallels that. of multigrhl: high-frequency errors

are smoothed out on the fine level, whereas low-frequency errors are reduced

t)y the coarse-level cot're<'t.ion.

The solutiotl values ol,taitu'd on the coarser level are used to rescale the

values within each aggregal.e by the saine factor. This rescaling guarantees

thal the fine-level sollH ioll remaitls a I)rol>al)ilil.y vector, i.e.. the coarse lew'l

correct.ion prodt,'es nmv fine-level values in the range [0, 1].

The coarse level Markov chain thus derived i'ot'ttls the basis of the

well-knowlt il.eralive aggregal.ion-disaggregal.ioll algorithms [14] in which an

aggregate-wise block (',auss-Seidel or block Jacobi ileraliotl on the line level

all.ernat.es wil.h a coarse level correction. These met.hods bear a strong t'esem-

I)lance l.o domaill decomposition methods for parlial <litt'_,retH.ial equations.

In cont.rasl, to these "'two-level" schemes, we will develop a mull.ilevel

solutiotl method l>v recursive al)l)licathm of aggregation whet',++ the l)rol)lenl

defined at each level t<'l>rcs<,nt.s a Markov chain. Tllv <'olrcet'Red solution value

at each coarse level stale is the Sttlll of the converged SO]lltiOlJ vahtes of its

COllSl.ituenl. fine level stales. It. is 1.o I)e hoped 1.ha1 silllilat' inll)rovetnents in

1)erformance ow'r single-level iterations such as Gauss .<;eidel can be ol>l,ailled

as ix lhe case for mulligt'i<l and ellil)t.ic I)arlial ditferenlial equations. The

intprovenlenl will conic ft'oltl choosing small aggrcgat<,s, ['ot' which il will 1,e

sufficient tnerelv to ilnl)rovc the relative prot>al)ililies using a few (',auss-Seidel

sweeps, rather than to use large aggregates consislillg of many unknowns,

and to solve for these vahu's, which can ])e exlt'etnel\ +expensive, hi addition.

the recursive al)l)licalioi_ of the aggregation will allow us cal)l, ure relat.ive

probal)ililies al all scales.



3 Multilevel Solution Algorithm

In this section, we recall the recently introduced multilevel algorithnl [5],

which in l)ased on a recursive aggregation of t,he Ma,rkov chain to obtain

al)l)roximatiotls of su('cessivelv smaller dimensions. The algorithm passes

through all levels of the hierarchy of chains in a multigri(l-style V-cycle. The

coarser level equations are the aggregation equations of se('l, iotl 2.

x,x,'(,a.dol) t the following a.I)l)reviatiotls for elelnentwise multil)li(:atiott and
divisiotl on vectors in IR'":

(t---- b*," .¢=> oi-- ki*c,, 1 < i < I1,

o = 5/t" <#=> a, = hi/ci. 1 < i < '.+

In the followit_g, h rel)resetlt.s an intermediat+, vector, _+ an approxima.tiotl

t.o the sohtl.ioll vector, and +l" a correction ve('lor. We denote l)v (tJ)(/) l.h('

i-t.h iterat(,. One iteration of the l+eo-level v(,rsion of the ML algorithnl, using

()lie relaxatiotD sweep on the fine level, in given 1)y the following se(ittence of

Stel)S.

I. Perforln one Gauss-Seidel relaxation sweel)s on the tiJl('r level, which

we denol.e I)y

+-,+= (;:_,((,,_)(i))

2. t{estri('l, the ('urrent a.pi)roxima.tiotl t.o the sohltion t.o the ('oarse level,

where l.he rest.ricl.ion ol)et'a.l.ot" h> is defined as smnma.tion of the va.lttes

of fine-level st al.es ntapl)ed t.o a conmlotl ('oa.rse st.at.(':

++ ;4-':Z 4.
,s_ E Sl

I_' can t)e represented bv a. N x ,+ ma.t.rix of zeros and ones.

:+{.(!onll)tlt.e the coarse level matrix :]l-l as an approximation to that of

equatiotl (_{) using the current vahms of l.he st)lution vector:

Ii )

a___. (1)



4. Solve the coarse Marker chain prolflem to1 Ut-I:

N

i'-',,'-' 0, I. (5)
I=1

5. (}ompul, e the coarse-level correction as the ratio of new coarse level

solution and reslricted fine-level solution. Ill ibis slep, we compute the

factor 1_3' which lilt, prol)ability of each aggregale must be corrected:

(d-')" = ,/-i/;/-i

6. (!Omlmte the fine-level correct.ion as a prolongat ion 1_of the coarse-h'vel

correction reeler'. All line level states of all aggregate are corre('t.ed l)v

tile same factor:

(ul) * = /'((ut-1) *) ¢:> (u_)7 = (ttl-l); ,'_; C ,q'I .

1_ can be rel)resenled 1)\' a. ,_ x 3,: matrix of zeros alld ones.

7. Apply 1.11('line-level correction, i.e., rescale the aggregale l)robabilities

Io obtain the lww i + lth iterale:

(.,_)li+l)= l=_)l,( t).. (0)

Ill this two-level forln, lilt, method ix similar 1.o l l_e ileralive aggregatlon-

disaggregatioll (IAI)) melhod of l{oury, McAllisler and ,_tewarl [7], excet)l

thal a poinlwise, rather lhan a block (',auss-Seidel, apl)roac]l is used. Tlw

multilevel algorillml ix ol_lained ])y recursive apl)li('aliou of lhe two-level al-

gorithm l,o ol)t.aill a solution lo the aggregaled eqllalioll (7)). It is described

ill algoril.hmi(" I'ot'111ill figure 2. 'Ptw coarse level/- I aIl(l fine level I, 1Jelween

which 1.he operal.ors P aml I? 1hal), are idenlitied by approl_rial.e ill(li{'es. \Ve

allow in general llw possit)ility of applying GS t.q l ilncs al, each level as a

l)re-smoolhing sle l) and t:2 limes a.s a l)OSt-Smoolllill:'.; Sit'l).

The muhilew'l nlelllOd is identical in sl,rucl, lll'O all_[ sintilar ill nlol.ivaliol_

to a standar(l llmltigri_t \'-cycle. 'The prim'il)al dill'erelwe resides iJl 1]w

(lerivalion of l.he line-level correclion fronl lhe coarse level sohlliOll ve('lor.

\¥hereas here lhe ('OlTe('l iOll is a mullil)lication I)v lilt i)rohmged rat io of new-

t.o-old coarse h'vel soluliolls, in slan(lard nmlligri_t it is the addiliou of lilt'

8



procedure ml(1)

if (l = O)

solve Al'uI ----0

else

id = GS"' ('. _)

b l-' = Rl_j,l(id)

Compute A l-J

ml(l-- 1)

(d-')*= .l-,/;/-1
(d)* = i)__,,_((,,t-_)')
,/= ;/• (,/)"
j = SS<>(.l)

return

Figure 2: Multilevel Algorithm

l)rolomlged <lifferen<'e between these two vectors, ttowever, in the following

section. I)v a l)sorl)ing the current apl)roximation ve<'tor into the l)rolongal.i<m

operalor, we can interl)rel, the MI, method as a multigrid scheme.

As is the case for algebraic multigri<l [13], we use an aggregalion stralegy

thai maps strongly-coupled fine-level states 1.() a COll!ll]Oll coarse level state.

In general, aggregation is pairwise, but aggregates consisting of three or four

states, or even as few as one state, are permitted if the coefficients so de-

mand. When the Markov chain contains strongly differing rates - which is

somewhat analogous to the presence of strong local convection or anisotropy

in I_I)I% - the convergence rate of the NIL schenle is sensil, ive lo the aggrega-

lion st.ralegy. \Ve use a. greedy algorithm to determine the aggregates whose

<'Onll)lexity is linear in lhe number of edges of the Markov gral>h.

4 Interpretation as a multigrid method

The multilevel method is based on the iterative aggregation-disaggregation

stral.egy, which dates a.t least, from 15175 [16] and whose e(lualions are (h'rived

in a natural way by probability a.rguments. In this section, we will show lhal



the schenle can bc written as a classical algcbrak' nmltigrid algorithm and

point out the particular choices of multigrid COlnl)Onents that the MI, scheme

rol)resellt, s.

We begin by considerillg the mulliplicativc coarse level correction as the

coulposil, ion of steps 5.6. and 7 in the algorithnl of scclion 3. This correction

is defined by
l-I

tt 1

H I

wh('r(" the new coarse h,vcl solution is used 1,o sc'a]¢' l he tine-h'vel solution

values in each aggregal(" I)v the sam(' fa('l, or. The (oars(' grid correction

ill nmlligrid is. ]u)wever, g('n('rally written as an additive ('Orl'e('l,ioll. so w(,

r<'wril¢' ,pqualiott (7) as

II 1

Thus, l,hc scaling of the flue solulion by lhe in'olongalion of llw ratio of new

and old coarse h,vcl solutioiis is equivah'nl 1o an addilive correction using

the prolonged di|['erclwe b¢.tween the two coarse wwlors scaled by a solution-

dependent faclor &l/h5 -1. This strategy ensures that lhe correclion sl,ep will

autonml, ically produce new linp-level sotulion values l,]|al remain bounded iJ_

the interval [0, 1]. Itl achlil, ion. we observe thai the rclat,ive 1)robal_ilitics of

tim sl,at,es within each agg|'¢,gal¢, are unaf['ccl,cd })y the coarse level correct, loll.

Observation 1 II) may u,ril¢ th_ :IIL mtthod u,ilb .n additive, r_dhtr lh.n

mulliplic_tliv,, corr, clioH, u.sing lh_ p rolong_tlion op, r.lor l _ given as

P= I)P .

_1,1_:1'_P is tb: ._land.rd m_dti.qrid prolom.tolion

U= H g

and I) is dqfin_d b!/

)1) = di._j ( Hbl)/

10



Thus, the prolongation operator is equivalent to tile standard multigrid

prolongation operator multil)lied by tile solution-det)endenl, diagonal matrix

D. Strict.Iv speaking, we should therefore represent the dependency of P on

b t by writing l)r,l, but we generally omit the suffix in the inl.eresl of siml)licil.y.

We now make some observations on the thus-defined multilevel algorithm.

Observation 2 Th_ prolongation and r_._lriction opcralors sati._fq lh_ fol-

Io u,in 9 co n dilio ns:

," ¢ ld, (s)

PRu I = ltu z . (9)

I_Pu 1-1 = I t-_'u t-I (10)

u,h_r_ I I. I t-1 ar_: lh( i&:nlily opcralors on Icvtl.s 1 and I - 1. r_sprcliv(l!l.

Proof of (9):

tl I

( P lh'l )_ - _ u! E "ti
s_ E "gl

.% E 51

l
: It i

[]

th'operties (8) (10) are in contrast to the usual case in mulligrid. Prol)-

ertv (9) has, I)erhaps, the mosl. int.eresling consequence, as O1)serva.tion 5

below will show.

Observation 3 7'h¢ coars_ h,,_l system dq[ine:d by ,,:1l-1 from (3) is cquiva-

h nl to the (;ahrkin approximation to A t d:fin:d by

A l-I = R,,I:P . (11)

Proof: li'{ may COml_ut¢ lh_ (l,l) coe,[lich,d of lhe ,nal,'i,r fl,,ltP a.s th(

l-th elemenl ofth_ vvctor fL,ttP_ I-I whcr_ _t-i = (0, ...,0, 1, 0 ..... 0)

,nd lhe 1 i.s in lh_ .1-th posilion. Thi._ 9ivc.s

(IL'ilP¢l-1)l =
,s j E >; j

)z 4 Z A',,
s, E ?;I

s s E N/

which is equivalcnl to (3).

11



From ObservationsI and 3, wedraw the following:

Observation 4 Th¢ ML method i._ tquival:nl to a c_rlain I"AS (;alerkin

mulligrid ilt ralion.

Some of t h(- above relationships have been noted I)v previous authors;

Haviv [4] discusses various iteratiw' aggregation schemes, pointing out (9)

and (ll), and Krieger [8] points out the relalionshil)between lAD schemes

and two-level multigrid algorithms.

If we consider al)l)lying the equivalent multigrid algoril hm to a non singu-

lar problenl with a 1loll-trivial right hand side, sucll as a discretized ]'oisson

equalion, we obtain lhc fi,llowing l:A,S-(_alerkin coarse level equation:

/L, ltp(.:-l) = H ff - R.4:fi t + IL, t:I'H_): , (12)

for which we may nol(" Ill(' tollowing.

Observation 5 Proptrlq (9) of lht ML prolong,lio, o/,ralor had,, to c_llt-

cHhttion of lhr ._co,d a*td lhird le:rm._ in lht Hghl ha,d .,i& oJ" (12).._/i_hli_z:l

th_ v_('tor tl.] "l uq_ich i._ co,._lant (tnd ma!t br p_'rcomput_d:

I¢AL p( t-, ) = iU.l

In traditional mull igri(l lnethods the coarse sx'sl(,nl is driven I)y lhe chang-

ing righl hand side (the r(,sl ricl.ed line-level defoe! ). ]:or linear problems, the

coarse matrix is ('()llSlalll _lll(l lllaV ])e I)re('olnl)ul.('(l. I_ lh,' presenl m('lho(t,

lh(, situation is rew'rse(l: l.h(' forcing function is collsl.allt, and successive

coarse solul.ions are driv(u[ I)ya changing sysl('nl nlalrix. The ('Oml)ulal.iollal

saving of l.h(' ]all_'r s_']_(,1_l_,in the e\'aluat.ion of lllc riglli hand side is sub-

sl.antial: one fine and on(' coarse ma.trix-vecl.or I)ro(lllcl I)('r iieralion.

The convergen(c I)t'operlies o[" the ML lnel.]_od will depend on the (lualily

of the a.1)proximatio]_ ofll_e coarse solution. ,Since lh(' coats(, equations are

solul.ion-dCl)endenl and w_rv from iteration lo itel'ali()l_, il is worlhwhile 1,o

ask how well lhe coarse nmlrix (1) al)l)roxinlal.cs 1t,,' converged malrix (3)

an(I, lher(,fore, how ('los(' Ill(" ('On_l)Uied solution u t- 1 can t,_, lo l lw COl_Verg;ed

solul ion u1-_

Definition 1 II) ,h.[i_ ,t_ appro;rimation b: 1o lh_ _.racl solution u _ 1o b_

._moolh, (/" lh_ r_htlir_ ma:/nit udes oJ"all ._olulio_ _,alu_., u,ilhi_ _o('h aggr_gal_

12



ort i, trror by ,o more than 0(<):

.sj E )"I .sj E Sl

,,!, <_o(, ) .,; c . (13)

Since aggregates are composed of neighboring line-level states, this definition

of smootlmess is consislent with that of algebraic smoolhness in the con-

l,exl O[' algebraic multigrid [13]. The smoothing proi)erty (reduction of high-

frequency a,lgel)raic errors) is equivalent t,o achieving al)proximately correct

relative nlagnitudes of ueighboriug solution values. Recall l hal the quality

of the coarse level matrix (4) depends only on the relative, rather than the

absolute, sizes of the solution values in each aggregat.e.

I'sing the eigenva.lue 1)roblem tbrmulation of equal, ion (1), where B =

(A l-I + 1)7' we write lhe coarse i)roblem

Bu l-l = u 1-1 (14)

At any it eralion of the lklL method unlil convergence is reached, the coarse

matrix will differ from its converged value. We write the matrix COmlml.ed

during |.hB MI_ il,el'a.tion frolll {t I as a pert.url)al.ion 1_ + 5 = (,_t-I + [)T of

the converged value /3. The apl)roximate coarse sysl, elll at any iteration is
therefore

(B + A). I-t = .l-1 (1,5)

Note 1,]1,_1,i _ has the same sparsily ])al, l_('t'll a,s l_.

Observation 6 If (13) i._ sali.*fi(d, lbcn lh( (rror malri.r X ._ali.,'(/'_._

.A = 0((). Equalio,._ (15) and (14) yield

iJ -1 =. l-1 + 0(_) . (16)

The coarse solution is therefore also in error by only CO(e). The exact forlll

ot" the error term in equation (16) can 1)e found ill [9]. V_e conclude that

an algebraically smooth fine-level at)l)roximal, ion will yield a coarse sysl, enl

whose solution is an acceptal)]e approximation 1,o that of the converged stal_e.

13
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Figure 3: Simple Multiprocessor l']×ample

5 Experimental Results

In comI)uter niodelling, Markov chains are seldonl (lev('loped explicitly: their

size alone woul(l in general make this an inipracli(al task. Instead, lnor('

al)sl.ra('l modelling i)ara(lignls ar(' used, th(' mosl iJnl)ortant of which are

(lUeueing nel.works and sl.ochasli(' Petri-n(qs. In order 1() (l(,nlonstral.(' lh('

gain in ef[i('ien('v of lli(' MI_ method over (;+q, w(' lh('ref()re solve Markov

('liains define(I indir('('l, lv via these niodelling l,ools. W(' choose a stociiasl, i<'

Pelri-nel model of a niulliprocessor froni the literature [1], a small queueing

nelwork, a well-known queueing nolw'ork model of a nnitti-user compuling

svsielll [l,_], and a sl,oCllastic Pel, ri-nel nlode] of a lllull, i-tasking ol)el'a,ling

svslem that has reccnl Iv al>l)eared [3]. The derival ioli of Markov chains from

slochaslic Petri-liels is described in [1. 11] and frolli queueilig nelworks ill

Figure :{ shows a liiuliipro('essor svsl.elii whi('h ('onsisls o[" #_ l)ro('essors Pr

1, l)r 2 ..... Pr 11, ea('[l with a l)rival.e lllelllOl'V luiil ])M 1, PM 2 ..... I)M 11.1o

whicli tiler ]lave (lire('l a('('('ss via a local l)us. Tli(' l)ro('('ssors ('ollllnunicate

via lwo ('Oli1111Oll lll(,lllOl'V uliils (!M I and (!M 2. Th(' l_ro('essors ('Olnl)("te

for a((('ss i.o 111(' lwo (o111111Oll lllelllOrV units via a global 1)us (llJ. A.illlOll(,

Xlarsall. Balbo alibi ('olil(, [[] give a (IS1)N Inodel of lliis liiull.iprocessor (l}te

slrucl.ilre of whi('tl is sliown ill [igure ,1) wlli('h alhJws for the l)ossibiliiy of

failure alld rel)air of t.he i)rocessors, the I)us and lit(' lll(qllOl'V units. The

niodel allows conll>Ul.al.ioli ot" the loss of (,f|'ecl iv(, ('()illl)iil al ional power ot" ltt('

pl'O('('SSOl'S (hi(' io (lowntinie and ('onll)etii, ion for l li(' svSlelll l'¢,SOlll'('('s.

[+'igllre ,_) shows llie coilll)ul.ational work of lhe (;,% and .MI, nielliods al)-

plied io this ln'olileln, where the numerical rallies of lhe paranielers are laken

fronl []]. \_'e siiow llie lolal lllllll[)er of niillions of t]oatin_ i)oinl Ol)erations

11



Figure ,1: (',SPN Model of Multipro('essor Svslem

needed to solve the problem a.s a function of l)roblem size measured as the

number of processors ill the model. The nmul)er of st.a.l.es of the Ma.rkov

chains varied from .ql (2 processors) t.o :lNN:] (10 processors). All l)rol)h'lns

,v.,.. .,, oa < l,- J0.
('Oml)aring the GS and ML schemes, we see that. a.lthough t ll('s(" arc

I)robh'lns of very small size. the saving in computational effort of ML over

(_S is quile dramatic: a factor of 27 for the smallesl, and of 10.9 for the la.rgesl

problelns considered. I1. is a.lso clear that. the gap widens as the l)robl('nl size
increases.

The SOl{ method, which is usua.lly used as a solver in softwa.r(, fools for

sl.ochastic Pet.ri nets [2, 10], does not. improve the situation for lhis problem,

I)('('ause tile Ol)limum overrelaxa.l.ion I)a.ra.mel,er is found to ])e one.

l:igure (i shows a slnall open queueing syslem consisting of three single-

S('l'vor (|ll('U('S. as might l.ypically 1)e used in a computer performan('e model.

Server S 1 with service rate .q0 r('l)resent, s a (7!P l: which re('eivos.jobs a,t a l]l('an

ra.l.e of 10 from the outside world for processing. There is a 70% probal)ilily

l.hal, jobs leaving SI ma_" then leaw" the system. Servers $2 and S:] might

represenl. I/O devices with service rates 7 a lk(1,5, respectiwqy. Tilere is a 10_S,

1,5



operations

3000 -

2500 -

2000 -

15O0 -

1000 -

500 -

(}

0 2 ,1 6 _ 10 12 14

# of processors in mod¢,l

Figure 5: (:Omlmt_llion_tl work for (_S (upper curve) and MI, (lower curve)

1.o solve lhe A.inlollc Marsan/Balbo/(lonle prol)lenl.

chance tha.1 a job leaving N3 relurns to Sl for further processing. The queues

have a finite Cal)acily c and reject incolning jobs when full. \.\.'_' assume l]lat

job arrival limes and service ra.tes are eXpOllentiall.v distributed, allowing us
t.o model this svslem by a Markov chain.

For this problem, l,he Markov chain has a regular lhree-dimensional sl.ruc-

ture which is somewhat analogous to 1]lai of a finil.c-elemcn! discrelizal.ion

of a t)I)E. Each st.ale of the chain may I)e characterized by the vector

(*_1, /_2, _:_), wh¢'r,' _,; ,h'not,'s the number of .iol,s i_ queue i. which nla.y

also I)e int.erl)rel('(l as a <'oor(linal(, index in lit(' i-i h ,tilu(,]Lsi(nl of the thr('('-

dimensional "grid" of sl ares. The lrallsit ions conl ained in the chain are the'

following:

(l/l. 112- I}:_

It I, I/2. I}:_

I/[, II 2, 117,

I/l, 112, 11:¢,

1/'1, 112, ll:,_

(ll 1 4- I. 712 , 11:_)

-'_ (1} I --l, 112 . 11:_)

--+ ('l - 1. *_e- '*:_+ 1)

--+ ('_1 + 1.._..:;- 1)

16
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>

("1, "2-":_)_ ('1. "_-1, ,,:_)

(111, Ii.2. 113) _ ('111, ,*_, .:_-1)

whero 0 < _.'1,'2,":_ < c aim transitions to stales with negative-valued index

arc disallo',ved.

The computational work. measured in millions of floating poinl ol)era-

/ions. required by (',S and ML to solve the qu('ueing prol)lem is shown in

figure 7. For this 1)rol)lem also, ML is more than ten times faster than (iS,

alt,hougl_ the "sidelength" of the largest Markov chain considered is only 40.

Figure S shows the computational elTorl,, measured a,s millions of floating

poin! operations carried oul,, for the solulion of a computer multiprogram-

ruing model which is due to Stewart [15] with the (;auss-Seidel and mullilevel

methods. The model descril)es a coml)uling sysl,elll consisting of a (',[)IT and

two I/O devices and the flow of jobs in this system l,,]la,l are iniliated by

a re|tuber of users typing commands a,l terminals. \¥e used the parameter

values as i1_ [15]. This mo(lel is of n(avly compht(:ly d(compo._abl_' type. i.e.,

il is described 1)v a, matrix that is close to 1)lo('k diagonal. The l)rol)lem is

s('a, le(l 1)y increasing the numl)er of jol)s in lhe system. Ah'ea(ly for 15 jol)s,

where the Markov chain has Sl(i unknowns, the multilevel method is a factor

of 1083 more efficient than (;auss-Seidel. The iml)rovemellt grows with lhe

prol)lem size.

Figure 9 shows numerical results for a Markov chain derived from a

stochastic Petri-uet model of an operating system due 1,o (;reiner et al [3].

The model tel)resents the state changes of l)rocesses in a computer wil,h a

17
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200 -
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S 1(i 2.I 32 .40

Que,(, ('apa,('ilv (

l:ig;ure 7: (!Ol,lml+:llio,al work for (',S (ul)p('r ('urv('). NII, (low(,' (urv(') to

solve th(' (lU('ll('ing I)rol)l('nl.

multitasking op('raling svst('m. Th(, 1)robh'lll can l>(' scaled by iucwasing

th+" munl)('r of jobs thai at(' itt the system simtlll_ttl('ou._lv. On the left, t,h('

('ompul+atiotlal eiI'orl of (;,'; atld NII_, tneasui'('d itl ulilliotls of t]oa, ting l)oiN1

oi)('rations, is shown a.,, a function of prol)l(,nt siz+,. TII(' performan('(" itll-

t)rov(,menl, o[" M 1, is o.('<' a,gaiu s(.eu to ii,('r(.as(, willi I)robtem size; al S jobs

MI, is 70 (iw_es I'ast('r (,hail (iS. ()n the righl side of l"igur(" 9, the (:onvergen('("

ta('t,or is showH. Th(' factor for NIl, is a (+otlsl,an( (}. 16 ['or all l)rol)l('tns o(,h('r

than th(' small('sl, wher(,as (,hal of (IS (h,ieriorai<,s fi'oiu (}..()75 to 0.9!)8 over

tlt(' itlt('rval.

6 Conclusions

\V(' hay(" (li,'<('us.'+('(l lh(' r('('(-tltlv introdtl('(,(l ttmhil('v('l solulion titetl,od for

the st(ka(ly state analysis of Markov (hahis, all illll>+(Jri,aill ('lass of l)roi)l('liis

in the slochast ic lno(lellin_ of l)liysi('al svsl('ins. Th(' iiicl ho(t is niolivat('(t as a

gen('ralizalioti of wcil-i,:uowu il('ralivc aggr(,gation-(lisag;gr('galion i echniques
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curve: (',auss-Seidel; l,ower curve: Mullileve].

(Tpper

to include multiple levels.

It is shown that the algorithm is equivalent, to an FAN multigrid met.hod

with a (;alerkin-st.yle coarse grid operator and a solution-del)endellt l)rolon -

gat.ion ol)eral.or. Tile ]at.t.er property o[' tlle schelne ensures that the coarse

gri<l correction produces solution values that. are t)ounded 1)et.we,,n zero and

one and that it leaves the relative probabilities within aggregates unchanged.

This may prove useful h)r the solution of PI)Es with similar rest.taint s on the

soltttion, including, for example, mass fraction problems, where tra,dil, ional

nmltigrid coarse grid corrections may produce under- and over-shoots.

The algorithm is shown t.o l)erl_)rm well compared to <'urrentlv used algo-

tit.bins, obtaining performance iml)rovements of ul) to three orders of magni-

tude on the prol)lems selected.

Further work will hlclude a more "mult igrid-like'" coarsening strategy and

i)rolongalion operator whicl_ is more similar to an interpolation. In this

lnanner, it is hoped thai the poor performance of the multilevel met]lod for

honlogeneously structured problems with very smooth solutions, which has

been ol)served, can 1)e iml)roved.
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